

Brilliant Hublic School

Seepat Road Bahatarai, Bilaspur (C.G.) Final Term Assessment - 2018-19 Class – IX Subject - Mathematics

TIME: 3:00Hrs. Date: 02.03.2019

M.M.80 Saturday

General Instructions:

- i) All questions are compulsory
- ii) The question paper consists of 30 questions divided into four sections-A, B, C and D. Section-A comprises of 6 questions of 1mark each, section-B comprises of 6 questions of 2 marks each, Section-C comprises of 10 questions of 3 marks each, Section-D comprises of 8 questions of 4 marks each.
- iii) There is no overall choice in this question paper
- iv) Use of calculator is not permitted. (v) Two questions of graph to be done in 1 sheet.

SECTION-A (1 mark each)

- Q.1 Express $0.4\overline{7}$ in form $\frac{p}{q}$.
- Q.2 Find the zero of the polynomial p(x) = 3x 2.
- Q.3 Find the volume of a sphere whose radius is 0.21cm.
- Q.4 Is it possible to construct a triangle with lengths of its sides as 7 cm, 8 cm and 5 cm? Give reason for your answer.
- Q.5 Find the probability of getting a composite number on the upper face of a die?
- Q.6 Prove that the sum of the angles of a triangle is 180°

SECTION-B (2 mark each)

- Q.7 The taxi fare in a city is as follows. For the first kilometre, the fare is Rs 8, for the subsequent distance it is Rs 5 per km. Taking the distance covered as *x* km and the total fare as Rs *y*, write a linear equation for this information.
- Q.8 If a point C lies between two points A and B such that AC=BC, then prove that AC= $\frac{1}{2}$ AB. Explain by drawing the figure.
- Q.9 Find the area of a triangle in which two sides are 18cm and 10cm and the perimeter is 42cm.
- Q.10 The mean of 40 observations was 160. It was detected on rechecking that the value of 165 was wrongly copied as 125 for computation of mean. Find the correct mean.
- Q.11 The angles of quadrilateral are in the ratio 3: 5 : 9 : 13. Find all the angles of the quadrilateral.
- Q.12 Draw and show that there is one and only one circle passing through three given non-collinear points.

SECTION-C (3 mark each)

Q.13 Visualise $4.\overline{26}$ on the number line, up to 4 decimals places.

OR

Simplify: - $\sqrt[4]{81} - 8\sqrt[3]{216} + 15\sqrt[5]{32} + \sqrt{225}$

Q.14 Factorise the expression by splitting the middle term:

 $9(x-2y)^2 - 4(x-2y) - 13.$

Q.15 If the polynomials $2x^3 + ax^2 + 3x - 5$ and $x^3 + x^2 - 4x + a$ leaves the same remainder when divided by x-2, find the value of a.

OR

The polynomial $p(x) = x^4 - 2x^3 + 3x^2 - ax + 3a - 7$ when divided by x+1 leaves the remainder 19. Find the value of a. Also find the remainder when p(x) is divided by x+2.

Q.16 A conical tent is 10m high and the radius of its base is 24m. Find

- i. slant height of the cone.
- ii. cost of the canvas required to make the tent, if the cost of $1 m^2$ canvas is Rs 70.
- Q.17 In which quadrant or on which axes do each of the points (-2,4), (3,-1), (-1,0), (1,2), (0,-3) and (-3,-5) lie? Write the co-ordicants of origin. Also write the equation of x and y axis.

OR

Q.18 Find the area of quadrilateral ABCD, in which AB=7cm, BC=6cm, CD=12cm, DA=15cm, and AC=9cm.

The sides of triangular field are 41 m, 40 m and 9 m. find the number of rose beds that can be prepared in the field, if each rose bed on an average need 900 cm² space?

Q.19 Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of

² heads coming up.

- ii. At least 2 heads coming up.
- iii. 2 tails coming up.

Q.20 In the given figure, the sides AB and AC of triangle ABC are produced to points E and D respectively.

If the bisectors BO and CO of \angle CBE and \angle BCD meet at point O, then prove that \angle BOC = 90° $-\frac{1}{2}$

∠BAC.

OR

In the given figure, p is point in the interior of the parallelogram ABCD. Show that:

- (i) $ar(APB) + ar(PCD) = \frac{1}{2}ar(ABCD)$
- (ii) ar(APD) + ar(PBC) = ar(APB) + ar(PCD)

Q.22 ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle DBC = 70^\circ$, $\angle BAC = 30^\circ$, find $\angle BCD$. Further, if AB=AC, find $\angle ECD$.

D

SECTION-D (4 mark each)
$$2+\sqrt{5}$$
 and x^2 x^2

С

Q.23 If
$$x = \frac{2 - \sqrt{5}}{2 + \sqrt{5}}$$
 and $y = \frac{2 + \sqrt{5}}{2 - \sqrt{5}}$, find $x^2 - y^2$.
OR
Simplify: $\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} = \frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}$.
Q.24 If $x^4 + \frac{1}{x^4} = 47$. Find the value of $x^3 + \frac{1}{x^3}$.

Q.25 A linear equation is given that converts Fahrenheit to Celsius:

$$F = (\frac{9}{5})C + 32$$

i. Draw the graph of the given linear equation.

- ii. If the temperature is $95^{\circ}F$, what is the temperature in Celsius?
- iii. Is there a temperature which is numerically same in both Fahrenheit and Celsius? If yes, find it.

Q.26 Find

- i. The lateral or curved surface area of a closed cylindrical petrol storage tank that is 4.2m in diameter and 4.5m high.
- ii. how much steel was actually used, if $\frac{1}{12}$ of the steel actually used was wasted in making the tank.
- Q.27 100 surnames were randomly picked from a local telephone directory and a frequency distribution of the number of letters in the English alphabet in the surnames was found as follows:

Number of letters	Number of surnames		
1 - 4	6		
4-6	30		
6 – 8	44		
8-12	16		
12 - 20	4		

- i. Draw a histogram to depict the given information.
- ii. Write the class interval in which the maximum number of surnames lie.
- Q.28 $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, then show that

i. $\triangle ABD \cong \triangle ACD$

ii. $\triangle ABP \cong \triangle ACP$

(i)

(ii)

(iii)

(iv)

- iii AP bisects $\angle A$ as well as $\angle D$.
- iv AP is the perpendicular bisector of BC.

 $\Delta AMC \cong \Delta BMD$

 $\Delta DBC \cong \Delta ACB$ $M = \frac{1}{2}AB$

 $\angle DBC$ Is a right angle

produced to a point D such that DM=CM. Point D is joined to point B. Show that: D А Μ В С

in or it

Q29 Prove that the line segment joining the mid points of any two sides of a triangle is parallel to the third side and equal to half of it.

OR

In Right triangle ABC, fight angled at c, M is the mid-point of hypotenuse AB.C is joined to M and

2.30 Construct a triangle XYZ in which $\angle Y = 30^\circ$, $\angle Z = 90^\circ$ and XY + YZ + ZX = 11 cm.

OR

Construct a $\triangle ABC$ in which BC = 5.6 cm, AC - AB = 5.6 cm and $\angle B = 45^{\circ}$. Justify your construction. = = = 0 0 0 = = =